Kamis, 15 Desember 2016

SIKLUS MENSTRUASI



Siklus menstruasi terjadi pada manusia dan primata. Sedang pada mamalia lain terjadi siklus estrus. Bedanya, pada siklus menstruasi, jika tidak terjadi pembuahan maka lapisan endometrium pada uterus akan luruh keluar tubuh, sedangkan pada siklus estrus, jika tidak terjadi pembuahan, endomentrium akan direabsorbsi oleh tubuh.
Umumnya siklus menstruasi terjadi secara periodik setiap 28 hari (ada pula setiap 21 hari dan 30 hari) yaitu sebagai berikut :
Pada hari 1 sampai hari ke-14 terjadi pertumbuhan dan perkembangan folikel primer yang dirangsang oleh hormon FSH.
Pada saat tersebut sel oosit primer akan membelah dan menghasilkan ovum yang haploid.
Saat folikel berkembang menjadi folikel Graaf yang masak, folikel ini juga menghasilkan hormon estrogen yang merangsang keluarnya LH dari hipofisis.
Estrogen yang keluar berfungsi merangsang perbaikan dinding uterus yaitu endometrium yang habis terkelupas waktu menstruasi, selain itu estrogen menghambat pembentukan FSH dan memerintahkan hipofisis menghasilkan LH yang berfungsi merangsang folikel Graaf yang masak untuk mengadakan ovulasi yang terjadi pada hari ke-14, waktu di sekitar terjadinya ovulasi disebut fase estrus.
Selain itu, LH merangsang folikel yang telah kosong untuk berubah menjadi badan kuning (Corpus Luteum). Badan kuning menghasilkan hormon progesteron yang berfungsi mempertebal lapisan endometrium yang kaya dengan pembuluh darah untuk mempersiapkan datangnya embrio.
Periode ini disebut fase luteal, selain itu progesteron juga berfungsi menghambat pembentukan FSH dan LH, akibatnya korpus luteum mengecil dan menghilang, pembentukan progesteron berhenti sehingga pemberian nutrisi kepada endometrium terhenti, endometrium menjadi mengering dan selanjutnya akan terkelupas dan terjadilah perdarahan (menstruasi) pada hari ke-28. Fase ini disebut fase perdarahan atau fase menstruasi.
Oleh karena tidak ada progesteron, maka FSH mulai terbentuk lagi dan terjadilan proses oogenesis kembali.

SISTEM PENCERNAAN MANUSIA



Sistem pencernaan manusia bisa dikatakan sistem sempurna untuk mencerna makanan , sistem dari mulut sampai anus sudah tersusun sedemikian rupa sehingga manfaat dari makanan dapat terserap oleh tubuh manusia, energi dari proses ini dimanfaatkan untuk melkukan kegiatan kehidupan yang sebelumnya sudah di bahas di ciri ciri makhluk hidup.
Sistem pencernaan yang terdapat pada manusia :
A. Rongga mulut
Di dalam rongga mulut terdapat gigi , lidah dan juga kelenjar lidah. Gigi pada anak anak disebut gigi susu ( gigi sulung ). jumlah dari gigi anak anak berjumlah dua puluh ( 20 ) buah yang terdiri dari 8 buah gigi seri 4 buah gigi taringdangeraham 8 buah, setelah berumur 6 – 14 tahun gigi susu diganti dengan gigi tetap, jumlahnya 8 gigi seri 4 gigi taring , 8 buah gigi geraham dan 12 geraham belakang.
Fungsi gigi :
a. Gigi seri berfungsi untukmemotong makanan
b. Gi gitaring berfungsi merobekmakanan
c. Geraham berfungsi untuk mengunyah makanan
Fungsi lidah :
a. Sebagai pengecap rasa makanan
b. Sebagai laat pemindah makanan
c. Sebagai alat bantu menelanmakanan
Kelenjar ludah menghasilkan ludah ( saliva ) sebanyak 2,5 liter per harinya. Di dalam rongga mulut terdapat 3 pasang kelenjar ludah, yaitu kelenjar ludah parotis,kelenjar ludah rahang bawah dan kelenjar ludah bawah lidah, Ludah merupakan cairan pekat yang mengandung air, lendir, garam dan enzim ptialin ( amilase )
B. Kerongkongan ( esofagus )
Kerongkongan menghubungkan mulut dengan lambung, pada kerongkongan terdapat faring ( tekak ) yang merupakan persimpangan antara tenggorok dengan kerongkongan.Pada pangkal farng terdapat epiglotis ( katup pangkal teggorok )
C. Lambung ( ventrikulus )
Lambung atau ventrikulus berupa suatu kantong yang terletak di bawah sekat rongga badan. Lambung dapat dibagi menjadi tiga daerah, yaitu daerah kardia, fundus dan pilorus. Kardia adalah bagian atas, daerah pintu masuk makanan dari kerongkongan . Fundus adalah bagian tengah, bentuknya membulat. Pilorus adalah bagianbawah, daerah yang berhubungan dengan usus 12 jari (duodenum).
Di dalam lambung, makanan dicerna secara kmiawi. Dinding lambung tersusun dari tiga lapisan otot, yakni otot melingkar, memanjang dan menyerong. Kontraksi dan ketiga macam lapisan otot tersebut mengakibatkan gerak peristaltik (gerak menggelombang). Gerak peristaltik menyebabkan makanan di dalam lambung diaduk-aduk.
Di bagian dinding lambung sebelah dalam terdapat kelenjar-kelenjar yang menghasilkan getah lambung. Aroma, bentuk, warna, dan selera terhadap makanan secara refleks akan menimbulkan sekresi getah lambung. Getah lambung mengandung asam lambung (HCI), pepsin, musin, dan renin. Asam lambung berperan sebagai pembunuh mikroorganisme dan mengaktifkan enzim pepsinogen menjadi pepsin. Pepsin merupakan enzim yang dapat mengubah protein menjadi molekul yang lebih kecil. Musin merupakan mukosa protein yang melicinkan makanan. Renin merupakan enzim khusus yang hanya terdapat pada mamalia, berperan sebagai kaseinogen menjadi kasein. Kasein digumpalkan oleh Ca²+ dari susu sehingga dapat dicerna oleh pepsin. Tanpa adanya reninm sus yang berwujud cair akan lewat begitu saja di dalam lambuing dan usu tanpa sempat dicerna.
Kerja enzim dan pelumatan oleh otot lambung mengubah makanan menjadi lembut seperti bubur, disebut chyme (kim) atau bubur makanan. Otot lambung bagian pilorus mengatur pengeluaran kim sedikit demi sedikit dalam duodenum. Caranya, otot pilorus yang mengarah ke lambung akan relaksasi (mengendur) jika tersentuk kim yang bersifat asam.Sebaliknya, oto pilorus yang mengarah ke duodenum akan berkontraksi (mengerut) jika tersentu kim. Jadi, misalnya kim yang bersifat asam tiba di pilorus depan, maka pilorus akan membuka, sehingga makanan lewat. Oleh karena makanan asam mengenai pilorus belakang, pilorus menutup. Makanan tersebut dicerna sehingga keasamanya menurun. Makanan yang bersifat basa di belakang pilorus akan merangsang pilorus untuk membuka. Akibatnya, makanan yang asam dari lambung masuk ke duodenum. Demikian seterusnya. Jadi, makanan melewati pilorus menuju duodenum segumpal demi segumpal agar makanan tersebut dapat tercerna efektif. Seteleah 2 sampai 5 jam, lambung kosong kembali.
D. Usus halus ( intestinum tenue )
Usus halus atau usus kecil adalah bagian dari saluran pencernaan yang terletak di antara lambung dan usus besar. Usus halus terdiri dari tiga bagian yaitu usus dua belas jari (duodenum), usus kosong (jejunum), dan usus penyerapan (ileum). Pada usus dua belas jari terdapat dua muara saluran yaitu dari pankreas dan kantung empedu.

Khasiat Anti Diabetes dari Tablet Daun Kelor (Moringa oleifera)



Diabetes mellitus merupakan salah satu penyakit tidak menular yang ada di dunia. Penyakit ini menyerang sekitar 135 juta orang pada tahun 1995 dan jumlah ini diperkirakan akan meningkat menjadi 300 juta pada tahun 2025 (King et. Al. 1998). Kerentanan meningkat dari jaringan seperti hati dan ginjal hewan yang diabetes, komplikasi dapat terjadi akibat peroksidasi lipid meningkat. Dari sudut pandang ini, pencegahan kerusakan oksidatif dianggap penting dalam pencegahan komplikasi diabetes yang diakibatkan peroksidasi lipid.
                Sayuran berdaun hijau merupakan sumber yang murah namun kaya beberapa mikronutrien dan fitokimia lain yang memiliki sifat antioksidan. Kandungan superoksida pada sayuran mentah lebih tinggi daripada sayuran yang dimasak. Oleh karena itu, perlu dilakukan penelitian lebih lanjut untuk mengetahui keefektifan kandungan dalam sayuran hijau, salah satunya yaitu daun kelor.
Tujuan Penelitian
                Penelitian ini bertujuan untuk merumuskan dehidrasi daun hijau, dengan menggunakan daun kelor diikuti dengan studi suplementasi dan untuk mengetahui khasiat anti diabetes pada pasien diabetes.
Bahan
Bahan utama yang digunakan pada penelitian ini adalah daun kelor (Moringa oleifera).
Bahan pembuatan tablet :
·         Serbuk daun kelor (98,34%)
·         Natrium Carboxy Methyl Cellulose (1,30%)
·         Metil Paraben Sodium (MPS) (0,18%)
·         Propyl paraben sodium (PPS) (0,02%)
·         BRONOPOL ( 0,01%)
·         Tale (0,16%).

Metode
1.       Pembuatan serbuk daun kelor
2.       Pembuatan tablet
3.       Pemilihan pasien
4.       Administrasi tablet untuk diabetes terpilih
5.       Analisis bio kimia
6.       Analisis statistic
Hasil
Hasil penelitian menunjukkan bahwa glukosa darah pasca prandial dari kelompok eksperimen awalnya adalah 210 mg / dl dan berkurang menjadi 191, 174 dan 150 mg / dl masing-masing setelah bulan pertama, kedua dan ketiga dari suplementasi. Dalam kontrol pasca tingkat kelompok glukosa darah prandial berkurang menjadi 169, 167, 163 mg / dl masing-masing, setelah bulan pertama, kedua dan ketiga dari studi dari nilai awal dari 179 mg / dl. Hemoglobin terglikasi dalam kelompok eksperimen awalnya 7,81 dan menurun menjadi 7,4 persen setelah periode suplementasi, tetapi pada kelompok kontrol mengalami penurunan menjadi 7,36 dari nilai awal sebesar 7,38 persen. Hasil menunjukkan bahwa daun kelor adalah sayuran berdaun hijau yang cocok untuk mengurangi komplikasi diabetes pada pasien diabetes.

GLUKONEOGENESIS



Glukoneogenesis adalah metabolisme seluler nutrien di dalam tubuh. Pada dasarnya glukoneogenesis adalah sintesis glukosa dari senyawa bukan karbohidrat, misalnya asam laktat dan beberapa asam amino. Proses glukoneogenesis berlangsung terutama dalam hati. Asam laktat yang terjadi pada proses glikolisis dapat dibawa oleh darah ke hati. Di sini asam laktat diubah menjadi glukosa kembali melalui serangkaian reaksi dalam suatu proses yaitu glukoneogenesis (pembentukan gula baru). Glukoneogenesis yang dilakukan oleh hati atau ginjal, menyediakan suplai glukosa yang tetap. Kebanyakan karbon yang digunakan untuk sintesis glukosa akhirnya berasal dari katabolisme asam amino. Laktat yang dihasilkan dalam sel darah merah dan otot dalam keadaan anaerobik juga dapat berperan sebagai substrat untuk glukoneogenesis. Glukoneogenesis mempunyai banyak enzim yang sama dengan glikolisis, tetapi demi alasan termodinamika dan pengaturan, glukoneogenesis bukan kebalikan dari proses glikolisis karena ada tiga tahap reaksi dalam glikolisis yang tidak reversibel, artinya diperlukan enzim lain untuk reaksi kebalikannya.
Glukoneogenesis  Asam-asam Amino
Kebanyakan atom karbon yang digunakan pada sintesis glukosa disediakan oleh katabolisme asam amino. Beberapa asam amino yang umum ditemukan mengalami degradasi menjadi piruvat. Oleh karena itu masuk ke proses glukoneogenesis melalui reaksi piruvat karboksilase. Asam amino lainnya diubah menjadi zat antara 4 atau 5 karbon dari siklus asam sitrat sehingga dapat membantu meningkatkan kandungan oksaloasetat dan malat mitokondria. Dari 20 asam amino yang sering ditemukan dalam protein, hanya leusin dan lisin yang seluruhnya didegradasi menjadi asetil-KoA yang menyebabkan tidak dapat menyediakan substrat untuk glukoneogenesis.
Glukoneogenesis gliserol
Selama puasa, kadar glukosa darah menurun, insulin menurun dan kadar glucagon meningkat. Perubahan hormone – hormone ini menyebabkan hati menguraikan glikogen (glikogenolisis) dan membentuk glukosa melalui proses glukoneogenesis sehingga kadar glukosa darah dapat dipertahankan. Empat jam setelah makan, hati menyalurkan glukosa ke dalam darah tidak saja melalui proses glikogenesis tetapi juga melalui glukoneogenesis. Perubahan hormone menyebabkan jaringan perifer mengeluarkan precursor yang menyediakan karbon untuk glukoneogenesis khususnya laktat, asam amino dan gliserol.
Reaksi tahap pertama glukoneogenesis merupakan suatu reaksi kompleks yang melibatkan beberapa enzim dan organel sel (mitokondrion), yang diperlukan untuk mengubah piruvat menjadi malat sebelum terbentuk fosfoenolpiruvat. Tiga reaksi pengganti yang pertama mengubah piruvat menjadi fosfoenolpiruvat (PEP), jadi membalik reaksi yang dikatalisis oleh piruvat kinase. Perubahan ini dilakukan dalam 4 langkah. Pertama, piruvat mitokondria mengalami dekarboksilasi membentuk oksaloasetat. Reaksi ini memerlukan ATP (adenosin trifosfat) dan dikatalisis oleh piruvat karboksilase. Seperti banyak enzim lainnya yang melakukan reaksi fiksasi CO2, pada reaksi ini memerlukan biotin untuk aktivitasnya. Oksaloasetat direduksi menjadi malat oleh malat dehidrogenase mitokondria. Pada reaksi ini, glukoneogenesis secara singkat mengalami overlap (tumpang tindih) dengan siklus asam sitrat. Malat meninggalkan mitokondria dan dalam sitoplasma dioksidasi membentuk kembali oksaloasetat. Kemudian oksaloasetat sitoplasma mengalami dekarboksilasi membentuk PEP pada reaksi yang tidak memerlukan GTP (guanosin trifosfat) yang dikatalisis oleh PEP karboksikinase. Reaksi pengganti kedua dan ketiga dikatalisis oleh fosfatase. Fruktosa-1,6-bisfosfatase mengubah fruktosa-1,6-bisfosfat menjadi fruktosa-6-fosfat, jadi membalik reaksi yang dikatalisis oleh fosfofruktokinase. Glukosa-6-fosfatase yang ditemukan pada permulaan metabolisme glikogen, mengkatalisis reaksi terakhir glukoneogenesis dan mengubah glukosa-6-fosfat menjadi glukosa bebas.
Dengan penggantian reaksi-reaksi pada glikolisis yang secara termodinamika ireversibel, glukoneogenesis secara termodinamika seluruhnya menguntungkan dan diubah dari lintasan yang menghasilkan energi menjadi lintasan yang memerlukan energi. Dua fosfat berenergi tinggi digunakan untuk mengubah piruvat menjadi PEP. ATP tambahan digunakan untuk melakukan fosforilasi 3-fosfogliserat menjadi 1,3-bisfosfogliserat. Diperlukan satu NADH pada perubahan 1,3-bisfosfogliserat menjadi gliseraldehida-3-fosfat. Karena 2 molekul piruvat digunakan pada sintesis satu glukosa, maka setiap molekul glukosa yang disintesis dalam glukoneogenesis, sel memerlukan 6 ATP dan 2 NADH. Glikolisis dan glukoneogenesis tidak dapat bekerja pada saat yang sama. Oleh karena itu, ATP dan NADH yang diperlukan pada glukoneogenesis harus berasal dari oksidasi bahan bakar lain, terutama asam lemak.
Pengaturan Glukoneogenesis
Hati dapat membuat glukosa melalui glukoneogenesis dan menggunakan glukosa melalui glikolisis sehingga harus ada suatu sistem pengaturan yang mencegah agar kedua lintasan ini bekerja serentak.Sistem pengaturan juga harus menjamin bahwa aktivitas metabolik hati sesuai dengan status gizi tubuh yaitu pembentukan glukosa selama puasa dan menggunakan glukosa saat glukosa banyak. Aktivitas glukoneogenesis dan glikolisis diatur secara terkoordinasi dengan cara perubahan jumlah relatif glukagon dan insulin dalam sirkulasi.
Bila kadar glukosa dan insulin darah turun, asam lemak dimobilisasi dari cadangan jaringan adipose dan aktivitas -oksidasi dalam hati meningkat. Hal ini mengakibatkan peningkatan konsentrasi asam lemak dan asetil-KoA dalam hati. Karena asam amino secara serentak dimobilisasi dari otot, maka juga terjadi peningkatan kadar asam amino terutama alanin. Asam amino hati diubah menjadi piruvat dan substrat lain glukoneogenesis. Peningkatan kadar asam lemak, alanin, dan asetil-KoA semuanya memegang peranan mengarahkan substrat masuk ke glukoneogenesis dan mencegah penggunaannya oleh siklus asam sitrat. Asetil-KoA secara alosterik mengaktifkan piruvat karboksilase dan menghambat piruvat dehidrogenase. Oleh karena itu, menjamin bahwa piruvat akan diubah menjadi oksaloasetat. Piruvat kinase dihambat oleh asam lemak dan alanin, jadi menghambat pemecahan PEP yang baru terbentuk menjadi piruvat.
Pengaturan hormonal fosfofruktokinase dan fruktosa-1,6-bisfosfatase diperantarai oleh senyawa yang baru ditemukan yaitu fruktosa 2,6-bisfosfat. Pembentukan dan pemecahan senyawa pengatur ini dikatalisis oleh enzim-enzim yang diatur oleh fosforilasi dan defosforilasi. Perubahan konsentrasi fruktosa-2,6-bisfosfat sejajar dengan perubahan untuk glukosa dan insulin yaitu konsentrasinya meningkat bila glukosa banyak dan berkurang bila glukosa langka. Fruktosa-2,6- bisfosfat secara alosterik mengaktifkan fosfofruktokinase dan menghambat fruktosa 1,6-bisfosfatase. Jadi, bila glukosa banyak maka glikolisis aktif dan glukoneogenesis dihambat. Bila kadar glukosa turun, peningkaan glukagon mengakibatkan penurunan konsentrasi fruktosa-2,6-bisfosfat dan penghambatan yang sederajat pada glikolisis dan pengaktifan glukoneogenesis. *Sri Rejeki, S.Pd.*